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Summary
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels participate in pacemaker currents, modulating the funny current (I[f ]) in 
cardiac cells and the hyperpolarization-activated current (I[h]) in neurons. Depending on the neuronal and synaptic localization, HCN chan-
nels regulate synaptic integration, long-term potentiation, synaptic transmission, and resting membrane potential. In summary, it contrib-
utes to the electrical activity between the excitatory and inhibitory stimuli through its shunting effect. Several second messengers modulate 
I(h) currents in the synapses by changing voltage-dependent activation kinetics. I(h) currents are being investigated in numerous central 
nervous system disorders, including epilepsy. On one hand, it is well known that I(h) currents lead to synchronized oscillations in the rhythmic 
burst mode in thalamocortical neurons underlying the pathophysiology of absence epilepsy. However, much of the evidence is contradic-
tory. Therefore, it is important to understand the dynamic relationship of HCN channels within the oscillatory networks to determine the 
regional “queerness” of I(h), and we need further investigation to determine if upregulation or downregulation of I(h) is needed in order to 
suppress seizure activity.
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Özet
Hiperpolarizasyon ile aktive olan siklik nükleotid kapılı kanallar (HCN) pacemaker akımlara katılırlar ve kalpte If nöronlarda ise Ih akımlarına 
aracılık ederler. Nöronal ve sinaptik yerleşimlerine göre, sinaptik entegrasyon, uzun dönemli potansiyalizasyon, sinaptik iletim ve dinlenim 
membran potansiyeli gibi faaliyetleri düzenlerler. Özetle, eksitatör ve inhibitör uyaranlar arasındaki elektriksel aktiviteye “şant etkisi” ara-
cılığıyla katkıda bulunurlar. Bir takım ikinci haberciler, voltaja bağımlı aktivasyon kinetiklerini değiştirerek Ih akımlarını modüle ederler. Ih 
akımları epilepsi de dahil olmak üzere birçok merkezi sinir sistemi bozukluğunda incelenmektedir. Bir taraftan, Ih akımlarının absans epilep-
sisi patofizyolojisinin altında yatan mekanizma olan talamokortikal nöronlarda ritmik patlama modunda senkronize salınımlara yol açtığı 
iyi bilinmektedir. Ancak, elde edilen veriler birbiriyle çelişiyor görünmektedir. Bu nedenle, bu HCN kanallarının osilasyon şebekeleri içindeki 
dinamik ilişkisini anlamak, Ih akımlarının bölgeye özgü davranış kalıplarını anlamak ve nöbet aktivitesini baskılamak için temelde nasıl bir 
modülasyonunun gerektiğine karar vermek için daha fazla araştırmaya mı ihtiyacımız olduğu aşikardır.

Anahtar sözcükler: Absans epilepsisi; siklik adenozin monofosfat; epilepsi; hiperpolarizasyon ile aktive olan siklik nükleotid kapılı kanalları; If; 

Ih; iyon kanalları; sıçan modelleri; diken-ve-dalga deşarjları.
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Introduction

Hyperpolarization-activated cyclic nucleotide-gated (HCN) 
channels participate in pacemaker currents,[1] mediating the 
funny current (I[f ]) in cardiac cells and the hyperpolarization-
activated current (I[h]) in neurons.[2] Early studies of the sinoa-
trial node (SAN) and Purkinje fibers date back to 1958[3] and 
1961.[4] I(h) and I(f ) were later were studied in detail in the 
SAN,[5] hippocampal pyramidal neurons[6] and rod photore-
ceptors.[7] Subsequently, the genes encoding the expression 
of HCN channels in heterologous systems were identified.[8]

I(f ) is called the funny current, assumed to be the result 
of the early German investigators directly translating 
“komisch,” as “funny,” which remains a common mistransla-
tion even today, but it is better translated as “strange.” The 
word ‘’komisch’’ perfectly describes HCN channel character-
istics. Instead of depolarization, I(h) channels are activated 
by hyperpolarization, and they reverse back at the poten-
tials near depolarization.[9] The I(h) current in neurons sets 
resting voltage levels and input resistance, adjusts the ex-
citability and firing rates of the cell, and contributes to the 
electrical activity between the excitatory and inhibitory 
stimuli.[10] Another quirk is the cyclic adenosine monophos-
phate (cAMP)-dependent activation of HCN channels as a 
voltage-gated ion channel.[2] 

Structure and Isoforms

HCN channels are classified both in the category of volt-
age-gated K+ channels and cyclic nucleotide-gated (CNG) 
channel classes.[11] HCN channels have 4 subunits around 
a central pore, consisting of 6 alpha-helical segments (S1-
S6). The ions are conducted through the loop between S5 
and S6. The voltage sensor is the S4 segment, which is pos-
itively charged.[12] During depolarization of the cell, the S4 
segment pushes S5 towards S6 and closes the pore.[13] There 
is a cyclic nucleotide-binding domain (CNBD) connected to 
the S6 segment by a C-linker domain. cAMP binds here and 
shifts the activation of the HCN channels to the less nega-
tive potentials by discarding the basal inhibition of CNBD.
[14] CNBD has 6 interconnected helixes and forms a loop 
to enable the binding of cAMP.[15] The weak selectivity for 
potassium over sodium seems to be related to the glycine-
tyrosine-glycine motif of the channel pore.[16]

HCN channels have 4 isoforms that exhibit different cAMP 
sensitivity, voltage characteristics, kinetics, and distribution.

[17] The selectivity of HCN for cAMP compared with other iso-
forms is related to the structural differences of CNBD in dif-
ferent isoforms.[18,19] While HCN1 and HCN3 are less affected 
by cAMP, the opening kinetics of HCN2 and HCN4 depend 
more on cAMP.[8,14] cAMP helps to increase the probability 
of channel opening by relieving the natural disinhibition 
caused by the conformation of CNBD.[20] The higher cAMP 
sensitivity of HCN2 has been suggested to be due to certain 
amino acid residues in the C-helix region of CNBD.

HCN channels are expressed throughout many cells.[21] HCN1 
and HCN2 are predominantly expressed in the brain and the 
highest expression of HCN2 is in the thalamus and the brain-
stem nuclei.[22] HCN2 is also expressed in the SAN and the 
atrioventricular (AV) node in the heart. HCN3 is expressed 
mostly in the hypothalamus, olfactory bulb, heart muscle, 
liver, lung, and kidneys, and the highest expression was 
found to be in the embryonic stages.[23,24] HCN4 is expressed 
in the thalamus,[25] basal ganglia, SAN, AV node, Purkinje, hu-
man testicles, skeletal muscle, and in the lungs (Table 1).[26,27]

Neuronal Distribution of HCN Channels

In general, the role of HCN channels in neurons comprises 
synaptic integration, long-term potentiation, synaptic 
transmission, control of working memory, motor learning, 
and resonance and oscillatory activities.[28] The differential 
neuronal distribution of HCN channels became prominent 
when considering processes such as dendritic integration. 
In order to trigger an action potential, many excitatory post-
synaptic potentials (EPSPs) must be gathered in the soma.
[29] It is thought that the greater accumulation of EPSPs in 
the soma on the distal site of the neuron rather than the 
proximal side may be due to temporal summation. But 
in turn, it is reduced in the distal more than the proximal 
due to condensed I(h) across the dendrite, where there is a 
6-fold increase with distance from the soma.[30] The block-
ade of HCN channels reduces excitability in the distal apical 
dendritic tufts, and therefore limits the distance depen-
dence of EPSP summation.[31] There is unequal distribution 
of HCN throughout the neuron to the proximal and distal 
sites by virtue of a shunting effect through the limitation in 
the activation of voltage-dependent calcium entry.[32]

The HCN isoforms at axon terminals have been shown to 
regulate vesicle release, such as regulating gamma-Ami-
nobutyric acid(GABA) release pre-synaptically[33] and glu-
tamate release through voltage-gated T-type calcium 
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(Ca[V]3.2) channels.[34] The coupling of HCN channels to 
other proteins, such as histamine H2 receptors[35] and A-
type potassium channels, has also been shown to regulate 
neuronal excitability.[36]

 
In summary, I(h) in the soma and proximal dendrites func-
tions to depolarize and stabilize the resting membrane po-
tential, and in distal dendrites, it decreases dendritic integra-
tion and limits dendritic calcium spikes. When expressed in 
axonal terminals, I(h) regulates GABA or glutamate release 
by enabling or disabling vesicles in different regions.[37] 

I(h) Currents and Activation Kinetics

HCN1 is activated in less than 100 milliseconds and is iso-
form exhibiting the fastest activation.[38] HCN2 channels, on 
the other hand, have an activation time of around 200 to 
400 milliseconds.[39] While HCN4 and HCN3 have the slowest 
activation kinetics; they are activated within a range of 400 
milliseconds to several seconds.[40]

Since HCN channels are activated by voltage, differences 
in the voltage-dependent activation of the isoforms are 
expected. In addition to the fast activation kinetics, it has 
been demonstrated that HCN1 is activated at voltages 20 
mV more positive (less negative) than those needed for 
HCN2 channels.[14] The cAMP response was greater in HCN2, 
which shifts the voltage levels around 20 mV to more posi-
tive potentials. The exact voltage of activation can vary, but 
several studies have been performed to define a range: -70 
mV for HCN1, -95 mV for HCN2, -77 to 95 mV for HCN3, and 
-100 mV for HCN4 are the voltage levels in neurons when 
these isoforms are activated.[41] 

There is another interesting issue with the activation of HCN 
channels. In depolarized potentials, HCN channels activate 
at more negative voltages, but in more negative voltages, 
the voltage-dependent activation changes to more posi-
tive potentials. Basically, there is an intrinsic rhythm for HCN 
channels to act upon the electrical status quo and generate 
rhythmicity. This nature of acting upon the changes in stim-
ulation is called the hysteresis concept.[42,43] 

Second Messengers and Modulation of HCN Channels

The first second messenger found to modulate HCN chan-
nels was cAMP, which promotes the opening of the chan-
nels by shifting the activation kinetics to less hyperpolar-
ized potentials, increasing the opening probability of the 
channels isoform dependently.[20] cAMP binding seems to 
be regulated by auxiliary subunit tetratricopeptide repeat-
containing Rab8b-interacting protein (TRIP8b) and the C-
terminal on the CNBD, accelerating activation and slowing 
deactivation.[44] In particular, the co-assemblance of TRIP8b 
and HCN channels plays a role in the cAMP-dependent acti-
vation of HCN2 and HCN4 isoforms.[45] 

Cyclic guanosine monophosphate (cGMP) has been shown 
to inhibit the gating of HCN2 channels with cGMP-depen-
dent protein kinase II-mediated phosphorylation through 
a specific serine residue (S641) of the C-terminal end.[46] 
HCN1, HCN2, and HCN4 isoforms have been shown to bind 
to cGMP with high affinity.[47]

While cAMP and voltage dependence are the key mecha-
nisms for the regulation and modulation of HCN channels, 
several small molecules and ions also have an effect on the 

Table 1.	 HCN channel isoforms

HCN Isoforms	 Regional Expression	 Known Modulators	 cAMP Sensitivity	 Activation Speed	 Activation Voltage

HCN1	 Cortex, hippocampus, cerebellum, 	 cGMP, PIP2, filaminA,	 Low	 Fast activated;	 -70 mV
	 thalamus, DRG*, SAN, AV,*	 Nedd4-2, Thyl, pH		  30-300 ms
	 Purkinje fibers
HCN2	 Thalamus* and brain stem nuclei**, 	 cGMP, PIP2, MiRP1, pH	 High	 Intermediate;	 -95 mV
	 cortex hippocampus, cerebellum, 	 tyrosine kinases		  200-400 ms
	 SAN, AV
HCN3	 Hypothalamus, olfactory bulb, 	 PIP2, pH	 –	 Slow gating; 	 (-77)-(-95) mV
	 heart muscle, liver, lung, kidney			   400 ms-s
HCN4	 Thalamus, basal ganglia, SAN*, AV*,	 cGMP, PIP2, pH, tyrosine	 High	 Slow gating; 	 -100 mV
	 Purkinje, human testicles, 	 kinases		  400 ms-s
	 skeletal muscle and the lung

*Predominant form in a certain region. **Highest expression. AV: Atrioventricular node; cGMP: Cyclic guanosine monophosphate; DRG: Dorsal root ganglia; 
MiRP1: MinK-related protein; Nedd4-2: Neural precursor cell-expressed developmentally down-regulated protein 4-2; PIP2: Phosphatidylinositol 4,5-bisphosp-
hate; SAN: Sinoatrial node; Thy1: A glycosylphosphatidylinositol-anchored protein.



modulation of HCN channels. Phosphoinositides are among 
those modulators. Phosphatidylinositol 4,5-bisphosphate 
(PIP2) acts like cAMP in terms of shifting the activation to 
more depolarized levels but equally on isoforms,[48] unlike 
cAMP[49] and the voltage shift seems to be a result of a dis-
tinct binding domain other than CNBD.[50] Src kinases are also 
known to regulate channel activation positively in an iso-
form-dependent manner.[51] Tyrosine phosphorylation acti-
vates HCN2 and HCN4 through the CNBD region.[52] Another 
kinase, p38- mitogen-activated protein kinase (MAPK), has 
also been observed to have a modulatory function on HCN 
channels.[53] Phosphatidic acid and arachidonic acid facilitate 
HCN gating by shifting the voltage activation 5 to 10 mV.[54]

A gaseous neurotransmitter, nitric oxide, has been shown to 
reduce I(h) current by binding to cysteine residue and form-
ing S-nitrosothiol complexes in the magnocellular neurose-
cretory cells of the supraoptic nucleus of rats.[55] 

Several small proteins have been shown to interact with 
specific HCN isoforms: MinK-related proteins with HCN2,[56] 
filamin A[57] and neural precursor cell expressed develop-
mentally down-regulated protein 4 (Nedd4-2) with HCN1,[58] 
and thymus cell antigen 1 with HCN1 (Thy1).[59] Moreover, 
physiological pH plays a role in the modulation of HCN 
channels. Acidification of the inside of the cell has been 
demonstrated to inactivate I(h) in several studies.[60] 

HCN Channels and Pathophysiology

Following the first findings of I(f ) in the SAN of HCN chan-
nels, several dysfunctions of HCN channels were examined 
in cardiac myocytes, the SAN and pacemaker cells in ani-
mal models (1).[61–63] In human studies, I(f ) was isolated in 
heart failure patients and was found to be associated with 
cardiac hypertrophy.[64] Congenital or acquired sick sinus 
syndrome,[28] as well as bradycardia,[65] and left ventricular 
cardiomyopathy were associated with mutations of HCN4.
[66] One interesting study shows HCN4 lacking the CNBD do-
main, which binds cAMP, had a reduced response to adren-
ergic stimuli.[67] A recent human study also confirmed the re-
sults of this study, indicating that sinus tachycardia patients 
with a gain-of-function HCN4 mutation responded more to 
cAMP.[68] To sum up, I(f ) currents that gain functions seem 
to be underlying pro-arrhythmic potential and tachycardia.
[69] In line with these outcomes, biomechanical engineering 
of HCN channels seems to be a promising strategy in com-
plete heart block pathologies.[70]

HCN dysfunction is related to several neuropsychiatric ab-
normalities. An association with schizophrenia has been 
reported in tHCN3 knockout (KO) mice.[71,72] Positive mod-
ulation of I(h) currents seems to have a role in fear acquisi-
tion and has been associated with anxiety.[73] Furthermore, 
dysfunction of HCN1 channels has been shown to correlate 
with depression, another neuropsychiatric condition.[74]

Neurodegenerative disorders, such as Parkinson’s disease,[75] 
amyotrophic lateral sclerosis,[76] Alzheimer’s disease,[77] and 
epilepsy may be a result of an I(h) current imbalance.[78,79] 
It makes sense, considering that the HCN channels set the 
neuronal firing pace, which is disrupted in epilepsy. It has 
been proposed that SH3 and multiple ankyrin repeat do-
mains 3 (SHANK3) may increase the possibility of devel-
oping epilepsy[80] and may also be associated with autism 
spectrum disorders, which have also been shown to be re-
lated to the function of HCN channels.[81]

Currently, the expression of HCN channels isoforms is also 
being investigated with regard to some peripheral nervous 
system pathologies, such as neuropathic pain.[82] It was 
found that HCN1 and HCN2 were reduced in the left and 
right sciatic nerve in a rat neuropathic pain model;[83] how-
ever, there was no change in the dorsal root ganglia (DRG), 
unlike other study findings that did indicated decreased 
HCN1 and HCN2 in the DRG.[82] In addition to nervous sys-
tem pathologies, HCN1 also seems to be associated with 
photoreceptor degeneration.[84]

HCN and Epilepsies

To take a quick look back at what HCN channels do in neu-
rons would be a good start to investigating the role of these 
channels in epilepsy. First, HCN channels act as pacemak-
ers, and in thalamocortical neurons, it has been shown that 
upon the generation of Ca++ spikes, HCN channels are 
involved in the burst action potentials.[85] Secondly, in den-
dritic synapses, I(h) has a shunt mechanism that paces EPSP 
amplitude and duration and limits temporal summation.
[86,87] The abnormal regulation of I(h) in layer III cortical neu-
rons, the neocortex, CA1 pyramidal neurons, and thalamo-
cortical neurons are a few examples of regions associated 
with seizure generation.[88–90]

 
Temporal lobe epilepsy[91,92] and absence epilepsy rat mod-
els have been well-studied with respect to I(h) current mod-
ulation.[93–96] I(h) disruption has also been reported in a ro-
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dent febrile seizure model.[97] HCN1 and HCN2 are among 
the isoforms that are related to genetic epilepsies in hu-
mans.[98]

There are several studies that associate HCN channel ex-
pressions with epileptogenesis. In a pilocarpine model, 
dendritic HCN1 and HCN2 channels were downregulated, 
and in the chronic period it was reported that expression 
re-increased when epilepsy was established.[91] In different 
seizure models, I(h) imbalance varied according to the re-
gion.[97] The differential regulation of I(h) in different seizure 
models may imply that a region-specific density of I(h) may 
serve various purposes in epileptogenesis and maybe even 
seizure protection/resistance dynamics.

HCN Channels in the Pathophysiology of Absence 
Epilepsy

Rhythmicity in the cortico-thalamo-cortical network, like 
sleep spindles and spike-and-wave discharges (SWD), which 
are delta activity, are thalamo-cortical oscillations that are 
modulated by hyperpolarization regulated by I(h).[99]

I(h) currents lead to synchronized oscillations in the rhyth-
mic burst mode,[85] creating pacemaker potentials with 

low-threshold Ca++ currents in the thalamic relay cells. The 
relationship between HCN channel function and absence 
epilepsy pathogenesis has been shown most specifically in 
HCN2 KO mice,[96] which had decreased HCN channel ac-
tivity and exhibited synchronized bilateral SWD activity, a 
hallmark of absence epilepsy on an electroencephalogram. 
This activity was characterized by abnormal rhythmic activ-
ity resulting in increased hyperpolarization in the thalamo-
cortical loop. The thalamocortical neurons of HCN2 KO mice 
exhibited increased burst firing with decreased I(h) current 
density, and the neurons were more hyperpolarized. Subse-
quent study results supported the association between neg-
ative modulation of I(h) and seizure production with the cod-
ing of a mutation in the TRIP8b HCN2 channel subunit.[100,101]

Experimental rat model studies using subjects with chronic 
absence epilepsy, Genetic Absence Epilepsy Rats from 
Strasbourg (GAERS), and Wistar Albino Glaxo/Rijswik (WAG/
Rij) rats, also revealed the role of HCN channels in the patho-
physiology of SWDs.[102] HCN1 expression and I(h) currents 
in the cortical neurons of WAG/Rij mice have been shown 
to be significantly reduced.[103] In addition to the quantity 
of I(h) currents, the sensitivity of these currents to cAMP 
has also been shown to play a role in the pathogenesis of 

Fig. 1.	 HCN channels on dendrites.



absence epilepsy.[89] In WAG/Rij and GAERS strains, the sen-
sitivity of thalamic I(h) currents to cAMP was demonstrated 
to be lower, and consequently, the expression of HCN1 was 
increased in thalamus by intracellular cAMP increases.[95] In 
GAERS specimens, HCN2 and HCN4 isoforms did not seem 
to change in thalamic reticular neurons (Rtn) or the ven-
tral posteromedial nucleus (Vpm) of the thalamus, but the 
cAMP insensitive isoform HCN1 was enhanced in the Vpm 
and the Rtn thalamus.[95] 

The inhibition of I(h) is thought to shift the activation kinet-
ics to more hyperpolarized potentials, where the shift from 
tonic to burst-firing mode occurs.[96] But a study did not find 
that much-expected increase in SWD during the applica-
tion of an I(h) blocker, ORG34167. Indeed, intracortical ad-
ministration resulted in SWD suppression.[104] I(h) blocking 
in the ventrobasal thalamus was observed to suppress burst 
firing in those neurons.[105] I(h) seems to be reduced in the 
neocortical neurons, while in the thalamocortical neurons, 
it may be either increased or remain unchanged in epilepsy.
[105] The contradictory data regarding I(h) need further inves-
tigation in different brain regions.

Future Perspectives 

Substantial work will be necessary to fully observe and un-
derstand the modulation of I(h) currents and the pheno-
type it expresses in single networks. The global inhibition 
of I(h) as a treatment strategy seems to fail, according to 
many studies. global I(h) agonism looks more promising 
in terms of SWD suppression, considering that the cortex 
plays a major role in expressing the SWD phenotype and is 
where I(h) currents are downregulated in absence epilepsy 
phenotypes.

Blocking I(h) has been shown to decrease delta oscilla-
tions,[106] and to reduce delta sleep.[107,108] I(h)-mediated delta 
and theta resonances obtained in hippocampal interneu-
rons and pyramidal cells under identical experimental con-
ditions had different outcomes.[109] Therefore, neuronal dis-
tribution, synaptic localization, and co-localization of HCN 
channels with other proteins should be investigated to find 
what exactly caused these different outcomes. 

Since the presence of delta frequencies with other thalam-
ocortical oscillations such as SWDs is seen as necessary,[110] 
the concept of vigilance comes forward.[111] An alpha-adren-
ergic blocker has been shown to decrease the delta fre-

quency in the cortex and in the Vpm.[107] The net effect on 
delta oscillations may be a result of a rise in cAMP concen-
trations that increases I(h), which strengthens the possible 
co-work of HCN channels and alpha adrenergic receptors. 
Therefore, it is important to investigate the interaction be-
tween the alpha adrenergic receptor and HCN, particularly 
considering their co-localization in certain brain regions 
(See Fig. 1).

Casting the more basic science side of the concept to the 
side, many antiepileptic drugs seem to be modulating I(h) 
currents now. Lamotrigine,[112] gabapentin,[113] acetazo-
lamide,[60] and ethosuximide have been demonstrated to 
increase I(h) currents.[114] Current medications that inhibit 
SWDs can be investigated for further mechanisms of action, 
especially T-type channel blocking agents that block SWDs. 

The concept that there is a single mechanism of action in 
pharmacology seems to be due for a change. The calcula-
tion of the combined or net effect of any antiepileptic agent 
with other factors could be a key to the future, especially 
considering the differential net effects of global funny cur-
rents.
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